skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Patel, Kavi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Reducing the force required during needle insertion is vital to minimize tissue damage in percutaneous procedures. A composite coating of Polydopamine, Polytetrafluoroethylene, and Activated Carbon materials was applied to the needles to address this challenge. The coating reduces needle surface friction, which eventually helps to decrease the insertion force and minimize tissue damage. In this study, measuring the insertion and extraction forces inside a bovine kidney showed that the coated needles decreased the insertion force by 49% and the extraction force by 30%. In addition, a histological analysis was conducted to compare the tissue damage caused by coated and bare needles. The results revealed that coated needles insertion reduced tissue damage by 39.6% compared to bare needles. These findings highlight the potential of this composite coating approach to improve the safety and precision of percutaneous procedures. 
    more » « less
  2. Medical interventions require control over surgical needle insertion to minimize tissue damage and target inaccuracies during percutaneous procedures. The composite coating of the needle using Polydopamine (PDA), Polytetrafluoroethylene (PTFE), and Activated Carbon (C) has been used to reduce the damaging needle insertion force. This research aims to further understand the interfacial mechanics of coated needle insertion by studying the forces at the needle and tissue interface and developing an analytical insertion force model through a combined experimental and numerical method. The proposed analytical force model is divided into two components: (1) Friction force on the needle shaft, modeled using a modified Karnopp model that includes an elastic force component; (2) Cutting force on the needle tip, modeled using a constant cutting coefficient for a given tissue and insertion speed. In this work, the analytical model was established by incorporating experiments conducted at a reasonable 35 mm insertion depth in tissues. In a bovine kidney with a 35 mm insertion depth, the insertion force evaluated through experimentation and modeling differed by 6.5% for a bare needle and 17.1% for a coated needle. It is important to note that this difference in the analytical insertion force model is anticipated when dealing with real tissues with a highly complex structured tissue. Prediction of the insertion force could potentially be utilized in robotic needle systems for needle control to improve the success of percutaneous procedures. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    This study is aimed to evaluate the effects of coated surgical needles with composite polymers such as polydopamine (PDA), polytetrafluoroethylene (PTFE), and carbon. The coated needle’s lubrication properties were measured using 3 DOF force sensors and 3D robot system by the repetitive insertion in soft tissue materials. Needle durability is a measure of needle sharpness after repeated passage through high stiffness tissue materials. The composite coatings were shown to reduce the insertion force by ∼49% and retraction forces by ∼46% when tested using a bovine kidney. The surface roughness and the lateral friction force of the needle are measured using the Atomic Force Microscope (AFM). The adhesion energy of the different coating on the needle will be measured using a nano-scratch method. 
    more » « less